Notice of Rights
This document contains proprietary and confidential information of the manufacturer. No part of this manual may be reproduced, copied, translated or transmitted, in any form or by any means, without the prior written permission of the company.

Notice of Liability
Information provided in this manual is intended to be accurate and reliable. However, Perfect Power Systems. assumes no responsibility for its use, nor for any infringement of rights of third parties which may result from its use. THIS DOCUMENT IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MANUFACTURER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trademarks
All trademarks and registered trademarks are the property of their respective owners.

Harsh Environment Series Installation and Operation Manual
Document No.: 725-MAN, Rev.B
August 5, 2019
Table of Contents

Table of Contents ... 3

Introduction .. 5
 Scope and Audience ... 5
 Safety and Warnings ... 5
 Warranty Registration and Warranty Certificate Request ... 5
 Service ... 5

Chapter 1. Safety .. 6

Chapter 2. Overview ... 10
 2.1 Product Description .. 10
 2.2 Product Features ... 11

Chapter 3. Hardware Overview .. 13
 3.2 Key Components ... 14
 3.3 Functional Description (Typical) ... 17
 3.4 Theory of Operation ... 19

Chapter 4. Installation .. 21
 4.1 Delivery Space Requirements .. 21
 4.2 Site Considerations ... 24
 4.3 Delivery and Handling .. 28
 4.4 Storing the System ... 37

Chapter 5. Operation .. 39
 5.1 Starting the Unit for the First Time ... 39

Chapter 6. Maintenance .. 42
 6.1 Safety Precautions .. 42
 6.2 Preventative Maintenance .. 43
 6.3 FRU Replacement ... 46
 6.4 Calling for Service ... 53

Chapter 7. Troubleshooting .. 54
 7.1 Reset Instructions .. 55
 7.2 Troubleshooting Guide and System Alarms .. 55
 7.3 Using the LCD Display Panel .. 57
Table of Contents

Chapter 8. Specifications ..60

APPENDIX A - Battery Connections ..65

APPENDIX B - Options ...73

B.2 Internal Manual Bypass Switch (Make Before Break) ..74
B.3 Form “C” N/O Contacts for Alarms ..74
B.4 Dry Contact, N/O or N/C Contact with Isolated Common ..74
B.5 Battery Breaker alarm ...75
B.6 External Wrap-around Manual Bypass Switch (same Input and Output Voltage)75
B.7 Audio Alarms with Silence Switch ..78
B.8 Remote Status Panel ...78
B.9 Transient Voltage Surge Suppressor (TVSS) ...79
B.10 Offline Inverter Operation ...79
B.11 Normally ON/OFF Output Aux. Circuit Breakers ...79
B.12 Main Input CB Standard/Higher KAIC ...79
B.13 Main Output CB Standard/Higher KAIC ..79
B.14 Power Flow Mimic ..79
B.15 Global Monitoring Systems (GMS) ..80
 B.15.1 Local Monitoring via PC with RS-232 ...83
 B.15.2 Local Monitoring via PC with RS-485 ...83
 B.15.3 RJ45 Ethernet connection ..83
B.16 Simple Network Management Protocol ..84
B.17 Battery Thermal Runaway Control ..85
B.18 Heater Strip with Adjustable Thermostat ...86
B.19 Battery String Monitoring (Wireless) ..86
B.20 Battery (Individual) Monitoring (Wireless) ...86

Index ...88
Introduction

This manual tells you how to install, start and operate your unit and lets you know how to get more information for special situations, and provide contact information.

Scope and Audience

This guide is intended to be used as a reference for users responsible for installing, operating, and maintaining this equipment.

Safety and Warnings

This guide uses the following symbols to draw your attention to certain information.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Tip</td>
<td>Cautions indicate that failure to take a specified action could result in damage to the hardware.</td>
</tr>
<tr>
<td></td>
<td>Cautions</td>
<td>Cautions indicate that failure to take a specified action could result in damage to the hardware.</td>
</tr>
<tr>
<td></td>
<td>DANGER</td>
<td>The Danger symbol warns users of possible injury or death if instructions are not followed.</td>
</tr>
<tr>
<td></td>
<td>Electrostatic Sensitive</td>
<td>This symbol warns users that the equipment is sensitive to electrostatic discharge (ESD) and could be damaged if users do not take appropriate precautions such as using a grounded wrist strap when touching or handling the equipment.</td>
</tr>
</tbody>
</table>

Warranty Registration and Warranty Certificate Request

Visit our web site at: www.800pwrsrvc.com under download tab

Service

If you require assistance, fill out a Service Report Form at www.800pwrsrvc.com, email us at service@800pwrsrvc.com, or call our 24-hour toll free hot line (800-797-7782). Please have the unit’s SERIAL NO. from the Start-Up label located on the top left corner of the front door for speed assistance.
Chapter 1. Safety

This chapter contains safety precautions to observe when operating or servicing electrical equipment. The symbols shown are used extensively throughout this manual. Always heed these precautions because they are essential to the safe operation and servicing of this product.
DANGER: This Equipment is intended to be permanently connected. Only factory-trained or authorized personnel should attempt to install or repair the unit or its batteries system. Improper installation has proven to be the single most significant cause of start-up problems. High AC and DC electrical voltages are present throughout the unit(s) and incorrect installation or servicing could result in electrocution, fire, explosion, or equipment failure.

DANGER: Read this manual in its entirety before performing the installation, start-up, operation, or maintenance of the UPS unit or battery systems. Failure to do so could result in electrocution, fire, explosion, or equipment failure.

DANGER: All power connections must be completed by a licensed electrician who is experienced in wiring this type of equipment. Wiring must be installed in accordance with all applicable national and local electrical codes. Improper wiring may cause damage to the equipment, injury or death of personnel. Verify that all high and low voltage input power circuits are de-energized and locked out before installing cables or making any electrical connections.

DANGER: Exercise extreme care when handling unit and battery cabinets to avoid equipment damage or injury to personnel. Cabinets weigh several hundred pounds.

DANGER: Test lift and balance the cabinets before moving. Maintain minimum tilt from vertical at all times. The bottom structure will support the unit only if the forklift forks are completely underneath the unit.

DANGER: Observe all battery safety precautions during installation or service of the unit or batteries. Even with the battery circuit breaker in the off position, the danger of electrocution may still be present. The battery power to the unit must be locked and tagged “off” before performing any service or work on the unit. The battery manufacturer’s safety information and material safety data sheet are located in a pocket attached to the inside of left door of each unit. Failure to follow those instructions and the instruction listed above and elsewhere in this manual could result in an explosion, fire, equipment failure, or electrocution.
DANGER: All power to the unit must be locked and tagged "off" before performing any service or work on the unit. Failure to do so could result in electrocution.

DANGER: In case of fire involving electrical equipment, only carbon dioxide fire extinguishers, or those approved for use on electrical equipment, should be used. Use of water on fires involving live high voltage electrical circuits could present an electrocution hazard.

DANGER: Extreme caution is required when performing maintenance. Lethal voltages exist within the equipment during operation. Observe all warnings and cautions in this manual. Failure to comply may result in serious injury or death. Obtain qualified service for this equipment as instructed.

DANGER: Be constantly aware that the unit system contains high DC as well as AC voltages. With input power off and the battery disconnected, high voltage at the filter capacitors and power circuits should discharge within 30 seconds. However, power circuit failures can occur, so you should always assume that high voltage might still exist after shutdown. Verify that power is off using AC and DC voltmeters before making contact.

DANGER: Some components within the cabinets are not connected to chassis ground. Any contact between floating circuits and the chassis is a lethal shock hazard.

DANGER: Internal battery strapping must be verified by the customer prior to moving this unit. This unit contains non-spillable batteries. Keep the unit upright. Do not stack. Do not tip. Always follow the battery manufacturer’s safety information, located in a pocket attached to the inside of the left door of your unit, to prevent an accident that could result in injury or death.
DANGER: Lead-acid batteries contain hazardous materials. Batteries must be handled, transported, and recycled or discarded in accordance with federal, state, and local regulations. Because lead is a toxic substance, lead-acid batteries should be recycled rather than discarded.

Do not dispose of batteries in a fire, the batteries may explode.

Do not open or mutilate the batteries. Released electrolytes are harmful to the skin and eyes and may be toxic.

A battery can have a high short circuit current and present a risk of electrical shock. The following precautions should be observed when working on batteries:

1. Remove watches, rings, or other metal objects.
2. Use tools with insulated handles.
3. Wear rubber gloves and boots.
4. Do not lay tools or metal parts on top of batteries.
5. Disconnect charging source prior to connecting or disconnecting battery terminals.
6. Determine whether battery is inadvertently grounded. If so, remove the source of the ground. Contact with any part of a grounded battery can result in electrical shock. The likelihood of such shock will be reduced if such grounds are removed during installation and maintenance.
7. Lead-acid batteries can present a risk of fire because they generate hydrogen gas. The following procedures should be followed:
8. Do not smoke when near batteries.
9. Do not cause flame or spark in battery area.
10. Discharge static electricity from your body before touching batteries by first touching a grounded surface.
Chapter 2. Overview

This chapter provides an overview of the Single-Phase Lighting Inverter Standard Series.

2.1 Product Description

The Harsh Environment Single-Phase Lighting Inverter is manufactured to provide critical power for lighting during a power outage. The Lighting Inverter meets or exceeds the life safety codes of UL924 and UL1778. These codes were established to allow emergency lighting inverters to provide critical power to the lighting circuits during a power failure.

If input power to the inverter is lost during a power outage, the system draws clean sine wave power automatically from its internal battery supply without any interruption. Power is provided for 90 minutes, sufficient time for safe and orderly evacuation from the facility.

An optional output transformer allows multiple output voltages as well as input voltages that are different from output voltages. They are available in 3kva to 17kw with input or output voltages of 120, 208, 240, 277 or 480 VAC, single phase. This information is shown on the nameplate located on the inside front door of the unit and should be recorded on page 5 of this manual.

The internal valve regulated lead-acid (VRLA), maintenance-free batteries provide 90 minutes of backup power. When input power is restored, the Lighting Inverter resumes normal operation automatically and begins recharging the batteries immediately.

An internal bypass circuit maintains power to the load in case an internal unit failure occurs. Comprehensive monitoring capabilities include a Liquid Crystal Display (LCD) panel and five dry relay contacts for remote monitoring.

Table 2-1 lists the cabinet dimension, and Figure 2-1 shows them.

<table>
<thead>
<tr>
<th>kVA/KW</th>
<th>Cabinet Size (Including Battery) (W x H x D in Inches)</th>
<th>Cabinet Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3KVA ~ 5KW</td>
<td>39” x 73.5” x 20”</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>6.5kVA ~ 17KW</td>
<td>51” x 77.5” x 33.5”</td>
<td>See Figure 4-2</td>
</tr>
</tbody>
</table>
2.2 Product Features

<table>
<thead>
<tr>
<th>Item</th>
<th>Components</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input Contactor K1</td>
<td>The input contactor is multifunctional. First, it provides connections for the input power to the unit. Secondly, the contactor disconnects the input line when an outage occurs so that there is no back feeding of power into the power line. Finally, the contactor allows for automatic unit operation upon a complete discharge of the batteries. No operator intervention is required when power to the unit is restored after a complete battery discharge.</td>
</tr>
<tr>
<td>2</td>
<td>Battery Charger</td>
<td>The battery charger maintains the batteries at full charge. After a battery discharge, the charger will automatically recharge the batteries upon restoration of input power. This circuit is on the Power Board.</td>
</tr>
<tr>
<td>Item</td>
<td>Components</td>
<td>Function</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>3</td>
<td>Power Board Assembly with IGBTs</td>
<td>The Power Board is bolted onto the IGBT (Insulated Gate Bipolar Transistor) blocks that are mounted on a heat sink. The complete Heat Sink Assembly with IGBTs and Power Board is replaceable as a single part. This FRU (Field Replaceable Assembly) converts all the power, i.e. input AC power converted to DC bus, battery power boosted to DC bus, and finally DC bus power converted to output AC power using PWM technology for a smooth AC sine wave. In case of a catastrophic failure, the complete Heat Sink Assembly is easily replaceable using only a screwdriver. The Power Board also contains the housekeeping power supplies and drivers for the IGBTs. The entire assembly provides the landing place for all internal input, output, DC cables and metering devices for control and monitoring of the unit input and output currents.</td>
</tr>
<tr>
<td>4</td>
<td>Control Board</td>
<td>The microprocessor with unit specific firmware and control circuitry is located on the Control Board. The Control Board is mounted on the cabinet door and communicates with the Power Board (A2) via a ribbon cable. It monitors the input and output voltages and generates the command to close or open the input contactor and to sense and change the status of the bypass static switch. The Control Board sends data to the LCD panel located on the door where actual status and parameters are displayed. It additionally provides optional AS400, RS232, and RS485 output capabilities and supports various communication including SNMP option.</td>
</tr>
<tr>
<td>5</td>
<td>Output Static Switch</td>
<td>This SCR solid-state switch connects the output of the inverter (UPS) to the load. It is connected on the primary side of the optional output isolation transformer. This switch shuts off in case of a problem or failure within the unit and transfers the load directly to the utility input via the bypass static switch. It maintains its status opposite to that of bypass switch.</td>
</tr>
<tr>
<td>6</td>
<td>LCD Display Panel</td>
<td>The LCD (Liquid Crystal Display) panel provides all the input, output, battery metering and alarm data, and UPS status for customer use on a constantly scrolling set of 2 default screens with continuous update.</td>
</tr>
<tr>
<td>7</td>
<td>Optional Output Isolation Transformer</td>
<td>The output isolation transformer provides isolation between the inverter and protected output. The power to the primary of this transformer is received from the unit and is transformed to required output voltage levels. It will also add another screen to the main menu.</td>
</tr>
<tr>
<td>8</td>
<td>Optional Maintenance Bypass Switch</td>
<td>The MBS (Maintenance Bypass Switch) removes the critical load from the backup power and provides utility input directly to the load in case of a unit malfunction or during system maintenance.</td>
</tr>
<tr>
<td>9</td>
<td>Battery Bank</td>
<td>The battery bank consists of sealed, maintenance-free batteries. The batteries provide emergency power during power outages. The battery bank includes a breaker for over current protection and DC disconnect.</td>
</tr>
</tbody>
</table>
Chapter 3. Hardware Overview

This chapter provides an overview of the system hardware. It includes a description of the system’s theory of operation.
3.2 Key Components

Figure 3-1 shows the key system components and Table 3-1 describes them.
Table 3-1. Key Components description

<table>
<thead>
<tr>
<th>Callout</th>
<th>Component Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Heatsink FRU Assembly | The power board is bolted onto the Insulated Gate Bipolar Transistor (IGBT) blocks mounted on a heat sink. The complete heat sink assembly with IGBTs and power board is a single Field Replaceable Unit (FRU) that converts all the power:
- Input AC power converted to DC bus
- Battery power boosted to DC bus
- DC bus power converted to output AC power using PWM technology for a smooth AC sine wave
If a catastrophic failure occurs, the heat sink assembly can be replaced using only a screwdriver. The power board also has the housekeeping power supplies and drivers for the IGBTs. The entire assembly provides the landing place for all internal input, output, DC cables, and metering devices for controlling and monitoring the unit input and output currents. |
<p>| 2 | Input 2-Pole terminal block (TB1) | Customer Input power connection. See 4.3.6 (page 32) |
| 3 | Ground Lug (input and output) | 2-barrel lug for Input and Output Ground. See 4.3.6 (page 32) |
| 4 | Output 2-Pole / 3-pole terminal block (TB1) | Customer output connection. See 4.3.6 (page 32) |
| 5 | Control board (A2) | The microprocessor with unit specific firmware and control circuitry is located on the Control Board. The Control Board is mounted on the cabinet door and communicates with the Power Board (A2) via a ribbon cable. It monitors the input and output voltages and generates the command to close or open the input contactor and to sense and change the status of the bypass static switch. The Control Board sends data to the LCD panel located on the door where actual status and parameters are displayed. It additionally provides optional AS400, RS232, and RS485 output capabilities and supports various communication including SNMP option. |
| 6 | LCD display panel | Provides continuously updated input, output, battery metering and alarm data, and UPS status for customer use on a constantly scrolling set of 2 default screens. |
| 7 | Terminal block for removing heat sink assembly (TB4)| 5-position terminal block (TB4). This terminal block provides quick and easy removal of power assembly. |
| 8 | Fan transformer, Control power transformer (T2) | Provides 120 VAC to the fans, with taps to match unit output voltages. |</p>
<table>
<thead>
<tr>
<th>Callout</th>
<th>Component Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Control transformer fuse (F1) Behind panel</td>
<td>Control transformer over current protection</td>
</tr>
<tr>
<td>10</td>
<td>Fan fuse (F2), behind panel</td>
<td>Fan overcurrent protection.</td>
</tr>
<tr>
<td>11</td>
<td>Fan(s)</td>
<td>Provides system cooling.</td>
</tr>
<tr>
<td>12</td>
<td>Output isolation transformer T1, as required</td>
<td>Provides isolation between the inverter and protected output. Power to the primary of this transformer is received from the unit and is transformed to the appropriate output voltage levels. It also adds a screen to the main menu.</td>
</tr>
<tr>
<td>13</td>
<td>Inverter test switch (S2)</td>
<td>Push-button switch for testing the Lighting Inverter and its batteries for proper operation. When the unit is operating, pressing and holding in switch SW-2 transfers the system to battery operation. The system continues to run on batteries until the switch is released. When the switch is released, the system returns to normal operation so long as input power is present.</td>
</tr>
<tr>
<td>14</td>
<td>(Optional) Main Input breaker (CB3)</td>
<td>Provides input overcurrent protection (optional).</td>
</tr>
<tr>
<td>15</td>
<td>Battery breaker (CB1)</td>
<td>Provides overcurrent protection for battery bank.</td>
</tr>
<tr>
<td>16</td>
<td>(Optional) Main output breaker (CB2)</td>
<td>Provides output overcurrent protection (optional).</td>
</tr>
<tr>
<td>17</td>
<td>(Optional) Output Auxiliary Breakers</td>
<td>Normally ON/OFF Output Auxiliary Breakers (Optional)</td>
</tr>
<tr>
<td>18</td>
<td>(Optional) Gnd/Neu terminals</td>
<td>Gnd/Neu terminals for optional auxiliary output breakers.</td>
</tr>
<tr>
<td>19</td>
<td>(Optional) bypass switch</td>
<td>Optional: Removes the critical load from the backup power and provides utility input directly to the load in case the unit malfunctions or during system maintenance (optional). See section 3.3.5.</td>
</tr>
<tr>
<td>20</td>
<td>(Optional) TVSS (Transient Voltage Surge Suppressor)</td>
<td>This option is a no-fuse, fail-safe surge suppressor featuring a fail-safe self-protected design, visual indicator.</td>
</tr>
<tr>
<td>21</td>
<td>(Optional) Interfaces terminal blocks for customer connection (General location)</td>
<td>Option customer connections i.e., when 120Vac is required, form “C” contact terminals, each terminal is marked accordingly for proper connection refer to each option for connection details in each cabinet size.</td>
</tr>
<tr>
<td>22</td>
<td>Maintenance free lead acid battery(s)</td>
<td>Batteries are sealed, maintenance-free, self-regulated lead acid construction, to provide emergency power during power outages. Other battery options are available upon request.</td>
</tr>
<tr>
<td>23</td>
<td>(Optional) Heater Strip Thermostat Controller</td>
<td>Adjustable thermostat Control (Optional)</td>
</tr>
<tr>
<td>24</td>
<td>Manual holder</td>
<td>Manual is located inside the unit in the holder</td>
</tr>
<tr>
<td>25</td>
<td>Front door Air Filter</td>
<td>Air filters are installed to prevent dust and moisture entering the units</td>
</tr>
</tbody>
</table>
3.3 Functional Description (Typical)

Figure 3-2 shows the major blocks within the system and the sections following the figure describe them.

Figure 3-2. Major System Blocks

3.3.1 Inverter

The inverter accepts the available DC power from the rectifier or the battery banks and converts it to AC power for the critical load.

3.3.2 Battery Charger

The battery charger converts AC power into regulated DC power to recharge and maintain the charge on the battery bank. The charger is fully automatic, with a current-limiting feature that prevents battery damage in case of a charger malfunction.

The charger is sized so that the batteries are maintained at full charge, even when the input voltage is at the low line limit for indefinite periods of time.
3.3.3 Output Transformer

The output transformer is used for multiple output voltage units only. It performs the following functions:

- It provides excellent common mode and normal mode noise isolation of the load from the input or inverter power.
- It provides voltage transformation and tight regulation of the output voltage, while the system operates from its internal inverter.
- It can be used to provide a different voltage from the input source voltage.

3.3.4 Battery

The battery bank consists of 8, 10, 12, 16, or 20 12-Volt batteries. These batteries provide the reserve energy to sustain the load when suitable AC input power is not present. The batteries are sealed, maintenance-free, valve-regulated lead acid (VRLA) construction.

3.3.5 Maintenance Bypass Switch

3.3.6 Internal Maintenance Bypass Switch, MBS Switch – Optional

Internal Manual Maintenance Bypass Switch is a (3) position “UPS”, “SBS” and “BYPASS” rotary switch, when set to “BYPASS” provides power directly from UPS main input feed to the load which ensures continuous power to critical load without interruption.

Caution: Do not leave the switch in the SBS position; otherwise, a loss of power to the critical load will occur when the inverter is de-energized.

3.3.7 Efficiency Optimizer Function: (OFF Line Inverter Mode)

When input power is available, the batteries are charged and AC output from the inverter supports the critical load via the inverter static switch. This is normal mode, during which the inverter static switch is closed, and the bypass static switch is opened. The bypass static switch is closed only during inverter faults or manual operation, in which case the critical load is supported by output power from the bypass static switch.

This is normal operation for true-double convention UPS. However, higher efficiency UPS operation can be achieved to reduce electricity costs by operating the unit as an “off-line inverter.” This scenario reverses the normal operating mode. Normally, the bypass static switch is closed as long as the input voltage and input frequency are within ±10% of the normal input voltage range and ±3 Hz of the normal input frequency range, and the inverter static switch is opened. In off-line inverter mode, the inverter static switch is closed only if input power fails or when an out-of-voltage and frequency condition exists.

By eliminating the requirement for an output voltage regulation of ±10% (voltage window range) or ± 15% (selectable) voltage window range:
System efficiency increases by 2 to 4% depending on the model.

Total power loss is reduced.

The output AC voltage in the mode of operation follows proportionally to the input line voltage.

The system supports two off-line inverter modes:

- A fast transferring version, with a quarter cycle (2.5 milliseconds).
- A slow transferring version, with 25 cycles (400 milliseconds to 1 second).

Fast transferring time is required when loads are sensitive to voltages such as HID lights and other voltage disturbances that affect their operation. We recommend you use the higher efficiency version if the output voltage regulation is not critical.

3.4 Theory of Operation

The following section describes the system’s theory of operation.

3.4.1 Standby Mode and Normal Mode

After power is applied to the system, the system enters standby mode and performs a self-test. During this period, the start subroutine checks for input voltage, and proper operation of the inverter and bypass SCRs. After the self-test completes successfully, the system enters normal mode.

During normal mode:

1. Input contactor K1 receives a closing signal that connects input power to the DC supply transformer.
2. The DC rectifier supplies the battery charger, control board, and the DC/AC inverter circuit.
3. The battery charger is activated, allowing the batteries to be charged continuously.
4. The on-line DC/AC inverter converts the DC voltage to a PWM waveform. This waveform is filtered and reconstructed to a desired AC output.

3.4.2 Response to Input Power Failure

If the system controller senses a change in input frequency greater than ± 3 Hz or an out-of-range input voltage, it:

- Considers the event as an input failure and opens the input contactor immediately, isolating the unit from the facility.
- Turns off the charger and makes the battery bank a DC supply source to the inverter circuit, maintaining an uninterrupted AC supply to the protected load.
- Issues a **UPS ALARM** message on the LCD display panel.

When the facility power returns, stabilizes, and is in phase with the backup power, the system controller closes the input contactor and the system returns to normal mode. If the battery voltage
drops below 16% of its nominal value and the facility power remains off, the system enters into alert mode.

3.4.3 UPS Alert

The system controller issues an **ALERT** message on the LCD display panel if any of the following conditions occurs:
- Internal failure
- System overheats
- Battery bank undervoltage

During an alert:
- The system stops its backup operation.
- The inverter SCRs are switched OFF.
- Bypass SCRs are switched ON.
- A summary alarm 5V signal is sent to the hardwired interface.

The system remains in this mode until power is cycled or the system is repaired.

3.4.4 UPS Alarm

The system controller issues a **UPS ALARM** message on the LCD display panel if any of the following conditions occurs:
- Input power failure
- Output overload

When the system is in alarm mode, inverter IGBs remain on and an alarm signal may be sent to the signal interface. The system resets itself when the problem no longer exists.

3.4.5 Output Loads

The system is designed to power any fluorescent or incandescent HID lighting. However, certain types of loads exhibit an excessive inrush current when first turned on or at other times during operation.

As a result, the capacity of the system might need to be greater than the capacity that is estimated based on requirements shown on the system’s nameplate. If you have questions about powering unusual loads from your system, contact your dealer or the factory.
Chapter 4. Installation

This chapter describes how to install the system. It includes pre-installation information along with guidelines for storing the system for future use.

4.1 Delivery Space Requirements

Verify that the delivery area, the destination, and the path between them meet the standard delivery clearance and weight requirements of the system.

The delivery area must provide enough space and floor strength to support the packaged equipment cartons for the system. Doorways and hallways must provide enough clearance to move the equipment safely from the delivery area to the destination. Permanent obstructions such as pillars or narrow doorways can cause equipment damage. If necessary, plan for the removal of walls or doors.

Verify that all floors, stairs, and elevators you use when moving the system to its destination can support the weight and size of the equipment. Failure to do so could damage the equipment or your site.

The following figures show the dimensions of the system cabinets as well cable access and mounting.
Installation

Figure 4-1. 3KVA/KW To 5KVA/KW Cabinet

NOTES (UNLESS OTHERWISE SPECIFIED)
1) ALL DIMENSIONS SHOWN ARE APPROXIMATE,
2) CONSTRUCTION: OUTDOOR.
Figure 4-2. 7.5KVA – 17KW Cabinet

Note: Use conduit plates only for drilling. (Do not discard the conduit plate)
Note: After final installation of the unit the 2 brackets can be turned upside down by using (7/32" Tamper-Resistant Hex) tool

4.2 Site Considerations

Planning the proper location and layout of the system prior to installing it is essential for successful operation. To ensure normal operation and to avoid unnecessary maintenance, plan your site configuration and prepare your site before installation, refer to Table 4.1 for facility recommendation.

The system is designed for indoor and outdoor installation and meets NEMA specifications for operating temperature, humidity, and utility voltage. The system enclosures are rugged and corrosion resistant.
The system is less than 6 square feet. All servicing is performed through the front of the unit; therefore, leave sufficient room in the front of the unit for service access.

The following precautions will help you plan an acceptable operating environment for the system:

Select a flat location that is clean, with no dust or exposure to direct sunlight or vibrations. The location should provide a sturdy, level surface that can support the system. Avoid locations with inclined floors.

The location should not be prone to variations in temperature and humidity or be close to strong magnetic fields or a device that generates electric noise.

The system should not be placed next to, on top of, or below any device that generates heat or will block the free flow of air through the system’s ventilation slots.

The Lighting Inverter cabinets (Harsh Environment series) provide cable and conduit openings on the top and sides of the cabinet. Be sure these areas are not blocked and can be easily accessed to expedite installation.

Electrical equipment generates heat. Ambient air temperature might not be adequate to cool equipment to acceptable operating temperatures without adequate circulation. Ensure that the room in which the system will operate has adequate air circulation.

- Always follow proper ESD-prevention procedures to avoid damage to equipment. Damage from static discharge can cause immediate or intermittent equipment failure.
4.2.1 Recommended Input / Output Protective Device Ratings, BTU/HR, & Floor Loading

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3KVA / 2.1KW</td>
<td>120</td>
<td>120</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>896</td>
<td>230</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>896</td>
<td>230</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>896</td>
<td>230</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>896</td>
<td>230</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td>3KVA / 3KW</td>
<td>120</td>
<td>120</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>1066</td>
<td>273</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>1066</td>
<td>273</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>1066</td>
<td>273</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1037</td>
<td>1066</td>
<td>273</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td>5KVA / 3.5KW</td>
<td>120</td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1171</td>
<td>300</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1171</td>
<td>300</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1171</td>
<td>300</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>30</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1171</td>
<td>300</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td>5KVA / 5KW</td>
<td>120</td>
<td>120</td>
<td>60</td>
<td>30</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>30</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>39 x 73.5 x 20</td>
</tr>
<tr>
<td>7.5KV A5.25KW</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>1037</td>
<td>1666</td>
<td>193</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1666</td>
<td>193</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1666</td>
<td>193</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>1037</td>
<td>1666</td>
<td>193</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td>6KW</td>
<td>120</td>
<td>120</td>
<td>90</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>50</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1284</td>
<td>329</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td>8KW</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1464</td>
<td>375</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>70</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1464</td>
<td>375</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>60</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1464</td>
<td>375</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>50</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>1037</td>
<td>1464</td>
<td>375</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td>10KVA / 7KW</td>
<td>120</td>
<td>120</td>
<td>150</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1037</td>
<td>2042</td>
<td>236</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>90</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1037</td>
<td>2042</td>
<td>236</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>1037</td>
<td>2042</td>
<td>236</td>
<td>51 x 77.5 x 33.5</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>10KVA / 10KW</td>
<td>120</td>
<td>120</td>
<td>150</td>
<td></td>
<td>277</td>
<td>277</td>
<td>60</td>
<td>50</td>
<td>192</td>
<td>49</td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>192</td>
<td>70</td>
<td>3057</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>192</td>
<td>70</td>
<td>3057</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>192</td>
<td>70</td>
<td>3057</td>
</tr>
<tr>
<td>12.5KV A/8.75 KW</td>
<td>120</td>
<td>120</td>
<td>175</td>
<td></td>
<td>120</td>
<td>120</td>
<td>125</td>
<td>125</td>
<td>192</td>
<td>61</td>
<td>2702</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>192</td>
<td>61</td>
<td>2702</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>192</td>
<td>61</td>
<td>2702</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>192</td>
<td>61</td>
<td>2702</td>
</tr>
<tr>
<td>12.5KV A/12.5 KW</td>
<td>120</td>
<td>120</td>
<td>175</td>
<td></td>
<td>120</td>
<td>120</td>
<td>125</td>
<td>125</td>
<td>192</td>
<td>87</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>192</td>
<td>87</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>192</td>
<td>87</td>
<td>3700</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>192</td>
<td>87</td>
<td>3700</td>
</tr>
<tr>
<td>15KVA /10.5KW</td>
<td>120</td>
<td>120</td>
<td>200</td>
<td></td>
<td>120</td>
<td>120</td>
<td>150</td>
<td>150</td>
<td>240</td>
<td>58</td>
<td>3212</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>240</td>
<td>58</td>
<td>3212</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>240</td>
<td>58</td>
<td>3212</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>240</td>
<td>58</td>
<td>3212</td>
</tr>
<tr>
<td>15KVA /15KW</td>
<td>120</td>
<td>120</td>
<td>200</td>
<td></td>
<td>120</td>
<td>120</td>
<td>150</td>
<td>150</td>
<td>240</td>
<td>111</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>240</td>
<td>111</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>240</td>
<td>111</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>240</td>
<td>111</td>
<td>5000</td>
</tr>
<tr>
<td>20KVA /14KW</td>
<td>120</td>
<td>120</td>
<td>200</td>
<td></td>
<td>120</td>
<td>120</td>
<td>200</td>
<td>200</td>
<td>240</td>
<td>60</td>
<td>5200</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>240</td>
<td>60</td>
<td>5200</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>240</td>
<td>78</td>
<td>5200</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>240</td>
<td>78</td>
<td>5200</td>
</tr>
<tr>
<td>17.0K W</td>
<td>120</td>
<td>120</td>
<td>200</td>
<td></td>
<td>120</td>
<td>120</td>
<td>200</td>
<td>200</td>
<td>240</td>
<td>126</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>208</td>
<td>208</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>240</td>
<td>126</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125</td>
<td>240</td>
<td>126</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>277</td>
<td>277</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>240</td>
<td>126</td>
<td>5400</td>
</tr>
</tbody>
</table>

For all wire sizes consult local codes and NEC based on unit current requirements.
For Different Input / Output voltage units, add 100 BTU/HR per KW for Transformer.
Input / Output power connections (terminal blocks), accepting 14 AWG to 2/O AWG.
The external input circuit breaker protecting the unit must be a delayed trip type. This is due to magnetic inrush current drawn during application of AC power.
4.2.2 Operating Environment
The location you choose for installation should confirm to the following conditions.

<table>
<thead>
<tr>
<th>Inverter Environment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature:</td>
<td>-20°C to +50°C (-4°F to 122°F) with optional heater</td>
</tr>
<tr>
<td>Altitude:</td>
<td>Up to 13000 ft (3,962 meters)</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>0 to 95% RH, non-condensing</td>
</tr>
<tr>
<td>Audible Noise:</td>
<td>57 dBA, typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Battery Environment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature:</td>
<td>20°C to 25°C (68°F to 77°F)</td>
</tr>
<tr>
<td>Relative humidity:</td>
<td>0% to 95% (non-condensing)</td>
</tr>
<tr>
<td>Operating altitude:</td>
<td>-1000 to +13000 feet, derate 10% for each additional 305 meters</td>
</tr>
</tbody>
</table>

Caution: Operating batteries outside of the specifications shown above will shorten battery life significantly.

4.2.3 Floor Load Ratings
The floor space at the installation site must be strong enough to support the combined weight of the Lighting Inverter unit and all battery cabinets. To ensure adequate load-bearing capacity, plan for the maximum configuration.

4.3 Delivery and Handling

4.3.1 Inspecting the Shipment
The equipment included in your shipment consists of one Lighting Inverter cabinets. Batteries will typically ship separately unless specified otherwise. The contents are covered with protective wrapping and packaged in heavy-duty cardboard. Each item is labeled with the component name for easy identification.

When the equipment arrives, count the number of items delivered to ensure that you have the complete shipment. Inspect all protective wrapping or crates and any boxes for signs of rough handling or damage, such as punctures and crushed sides, preferably without moving the equipment. If the shipping container or equipment itself shows evidence of damage, record the
damage on the receiving document before signing for receipt of the equipment. Damage claims should be filed directly with the carrier.

Thoroughly inspect each battery for any signs of damage. If there is any damage, reject the shipment and notify the manufacturer by email services@800pwrsrv.com. If possible, photograph the damage for future reference. As you unpack the pallet or container, check each battery box for damage on all sides, the top and bottom. If there is any sign of damage, photograph the damage if possible, and email services@800pwrsrv.com.

4.3.2 Offloading the System

Because the system is designed for pad mounting, it is not accompanied by casters. At the user’s discretion, a forklift can be used to off load the unit from the shipping pallet. Always be sure that the load capacity of the forklift is sufficient to support the weight of the unit and its battery cabinets.

DANGER: Exercise extreme care when handling the cabinets to avoid equipment damage or injury to personnel. Each cabinet weighs several hundred pounds. Test lift and balance the cabinets before moving. Maintain minimum tilt from vertical at all times. The bottom structure will support the unit only if the forklift forks are completely underneath the unit.

4.3.3 Climatization

Units that are shipped or stored at extreme temperatures require time to adjust to operating temperatures before startup. If the unit arrives in hot or cold weather, do not unpack it until it has been allowed to reach room temperature (one to two hours). Immediately exposing the unit to warm temperature can cause condensation to occur, which could damage the electronics. If you notice any condensation, allow the unit to stand unattended for one to two hours, and then unpack it.

4.3.4 Unpacking the Equipment

After checking the cartons for signs of damage, perform the following steps to unpack the equipment:
1. Open all cartons.
2. Compare the items received to the packing list. If an item is missing or damaged, contact your place of purchase.
3. Remove all packing materials, envelopes, and boxes from the cartons. Please keep all packing materials and cartons in case you need to transport or ship the unit.

In addition to the contents supplied with the unit, the user must supply a forklift to perform the installation.

Note: After unpacking and **before turn-on:**

use plastic cover provided in the pouch on the front door to cover the unit during installation and while waiting for turn on, to prevent dust, construction debris and any other foreign object entering the unit.

Accumulation of dust and debris on all electronic will cause damage which will not be covered by warranty.

4.3.5 Cabling and Mounting

1. There are conduit entry plates provided at the bottom of the cabinet, drill conduit opening on the plates.

2. Anchor the cabinet to the mounting pad by removing the 4 corner mounting plates (see Figure 4-3 and Figure 4-4 for Anchoring and conduit plate).

3. Anchor the conduits to the conduit knockouts.

Figure 4-3 3KVA/3KW systems
Note: To prevent moisture entering the cabinet all openings at the bottom must be weatherproof after installation.

For all cable entries to the unit:
1. Use conduit plates only for drilling. (Do not discard the conduit plate)
2. Ensure the conduit plate is bolted back after installation is completed
3. Ensure all conduit ends entering the cabinet at cable exit are sealed with foam sealant for weather proofing.

If you require more assistance email service@800pwrsvs.com
4.3.6 Electrical Connections

The following sections describe how to perform the electrical connections. In these sections, “TB” refers to terminal block. Before making electrical connections, observe the following:

DANGER: Verify that all customer-supplied wiring is de-energized before performing any electrical work. Failure to do so could result in electrocution, injury, or damage to equipment.

DANGER: Even when the unit is off, there are potentially dangerous voltages within the outdoor unit due to the batteries. Exercise extreme care when working within the system enclosure to avoid the possibility of electrocution, injury or damage to the equipment.

![Diagram of electrical connections and terminal blocks]

Figure 4-5 Input / Output Terminal Block Section Typical Arrangements
Figure 4-6 Single Output Voltage Connection with Optional Main Input/Output and Auxiliary Breakers (Typical)
Figure 4-7 Dual Output Voltage Connection with Optional Main Input/Output and Auxiliary Breakers (Typical)
Figure 4-8 Input and Output Connection Single Output Voltage (120V, 240V, 277V, 208V)

Table 4.4 Input and Output Connection Single Output Voltage

<table>
<thead>
<tr>
<th>Input Connection</th>
<th>Output Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volt</td>
<td>Volt</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>208</td>
<td>208</td>
</tr>
<tr>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>277</td>
<td>277</td>
</tr>
<tr>
<td>480</td>
<td>480</td>
</tr>
</tbody>
</table>

For 1 POLE or 2 POLE connections:

- **Input Connection**
 - Volt: 120, 208, 240, 277, 480
 - TB1: L1, L2
 - Ground Lug: N, GND (IN)

- **Output Connection**
 - Volt: 120, 208, 240, 277
 - TB2: L1, L2
 - Ground Lug: N, GND (OUT)
4-9 Input and Output Connection Dual Output Voltage

Table 4.5 Input and Output Connection Dual Output Voltage

<table>
<thead>
<tr>
<th>Input Connection</th>
<th>Output Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volt</td>
<td>TB1</td>
</tr>
<tr>
<td>120V</td>
<td>L1</td>
</tr>
<tr>
<td>208V</td>
<td>L1</td>
</tr>
<tr>
<td>240V</td>
<td>L1</td>
</tr>
<tr>
<td>277V</td>
<td>L1</td>
</tr>
<tr>
<td>480V</td>
<td>L1</td>
</tr>
</tbody>
</table>

4.3.6.1 Battery Connections

There are various battery configurations based on battery bus voltages. For reference purposes, see battery connection for information about specific battery connections, refer to the battery connection diagram inside the front door packet.
Caution: Ensure that the DWG NO of the system matches the DWG NO on the nameplate. See the sample nameplate.

Figure 4-10. Sample Nameplate

4.3.7 Optional Remote Signaling Connections

The Single-Phase Lighting Inverter includes optional dry contacts relay for remote signaling.

4.3.7.1 Form “C” N/O Contacts for Alarms

Refer to B.3 (page 74) for connection details.

4.3.7.2 Dry Contact, N/O or N/C Contact with Isolated Common

Refer to B.4 (page 74) for connection details.

4.4 Storing the System

If you will not be using the system as soon as you receive it, keep it in its original packing material and store it in an indoor environment that meets the following conditions.
Storage Temperature
-20° to 70°C (-4° to 158°F)

Relative humidity
0% to 95% (non-condensing)

Note: After unpacking and before turn-on:

use plastic cover provided in the pouch on the front door to cover the unit during installation and while waiting for turn on, to prevent dust, construction debris and any other foreign object entering the unit.

Accumulation of dust and debris on all electronic will cause damage which will not be covered by warranty

4.4.1 Recharging Batteries During Storage

If the unit will be stored for three months or longer, visually inspect, and charge the batteries for 24 hours at regular, three-month intervals, refer to the battery label for battery voltage and use appropriate charger.
Chapter 5. Operation

This chapter describes how to operate the unit.

5.1 Starting the Unit for the First Time

5.1.1 Pre-start up

The unit’s batteries are shipped directly from manufacturer to ensure brand new batteries and allow an opportunity for the installing contractor to schedule their arrival when they are ready to commission the system. The battery cabinet and the interconnect cables are shipped with the electronics section of the inverter in a cardboard box located inside each battery cabinet.

Please be sure not to start up the unit without the assistance of a factory trained, authorize personal as failure to do so may damage the unit and void the unit warrantee.

To request a start-up: Either complete the form on line (6002-1545) and email it to service@800pwrsrc.com or fax a printed copy to Power Services at (323) 721-3929.

Caution: Ensure the unit is clean and free of dust and debris.
5.1.2 Preparation of Batteries

a. Ensure proper number of batteries are delivered with your order. Verify quantity against battery drawing located in the inner door pouch.

b. Place battery ID (Number) labels on each battery, refer to Battery Installation and Connection Instruction: Document No. 6005-329.

c. Ensure batteries are charged within a 3 months period, after the initial receipt, follow the Service Log sheet (6002-2017-04) for battery maintenance scheduling to protect the warranty.

d. Ensure that battery cables are properly torqued to the battery terminals. See battery drawing for torque values, found within the unit’s door panel.

5.1.3 Preparation of Electronics

a. Ensure facility load is within full load rating of the electronics. Full load power rating of the unit can be found on name plate within the inner cabinet door.

b. Make sure all input power, output power and DC terminal blocks are properly torqued.

⚠️ Caution: All loads must be verified for short circuit test before connecting to the output of the unit.

💡 Note: The pre start-up procedure described in this manual is a reference only to a start-up of the UPS for maintenance and shutdown.
5.1.4 Turning Off the Unit

There may be times when you need to turn off the unit, such as for planned maintenance. To turn off the unit, perform this procedure in the following order:

1. Turn off the output breakers.
2. Turn off the battery breaker.
3. Turn off the input breaker.

5.1.5 Start-up procedure after shut-down or maintenance (Post Initial Start-Up)

Use the following procedure to start the unit after a planned maintenance shutdown or after a power outage. (Follow instruction on the label placed on the Maintenance Bypass Switch if the unit is in Maintenance Bypass Mode).

1. Apply input power.
2. With input power available, turn on the main input circuit breaker.
3. Wait until you hear the input contactor closing and fan running.
4. After the LCD display is lit and shows the following messages:
 ![LCD display](image)

5. Close the battery circuit breaker.
6. Verify that all parameters on the LCD display panel matches the Nameplate.
 ![LCD display](image)

7. Close the output circuit breaker.
8. Turn on the auxiliary output circuit breakers.
Chapter 6. Maintenance

This chapter describes how to maintain the system.

6.1 Safety Precautions

Observe the following safety precautions when performing maintenance on the unit.

DANGER: Read and understand this section thoroughly before performing any maintenance work on or around the UPS. Read the battery manufacturer’s manual and material safety data sheets before working on or near the batteries. Only normal safety precautions are required when the UPS is operating with all cabinet doors closed. However, the UPS and battery cabinets must be kept free of standing puddles of water, excess moisture, or debris. Debris can consist of excessive dust in and around the unit, as the cooling fans in the UPS will pull this dust into the unit.

DANGER: Only factory trained, or authorized personnel should attempt to install or repair the UPS or its battery system. Improper installation has proven to be the single most significant cause of start-up problems. Service personnel should wear insulating shoes for isolation from direct contact with the floor (earth ground) and should make use of rubber mats when performing maintenance on any portion of the unit while it is under power. High AC and DC electrical voltages are present throughout the unit(s) and incorrect installation or servicing could result in electrocution, fire, explosion, or equipment failure.

DANGER: Special safety precautions and lockout tagout procedures are required for all operations involving the handling, installation, or maintenance of the UPS system and any associated battery cabinets. Failure to follow safety procedures could result in death, injury or damage to equipment.

DANGER: This equipment contains circuits that are energized with high voltages. Only test equipment designed for troubleshooting high voltages should be used, particularly for oscilloscopes and probes. Always check with an AC and DC voltmeter to ensure safety before initiating contact or using tools. even when the power is off, dangerously high potential voltages may exist at capacitor banks. Always observe battery precautions when operating near any batteries. Failure to observe these precautions could result in death or in injury or damage to equipment.
DANGER: Observe all battery safety precautions during installation or service of the UPS or batteries. Even with the battery circuit breaker in the off position, the danger of electrocution may still be present. The battery power to the unit must be locked and tagged "off" before performing any service or work on the unit. The battery manufacturer's safety information and material safety data sheet are located in a pocket attached to the inside of left door of each UPS. Failure to follow those instructions and the instruction listed above and elsewhere in this manual could result in an explosion, fire, equipment failure, or electrocution.

DANGER: Be constantly aware that the UPS system contains high DC as well as AC voltages. With input power off and the battery disconnected, high voltage at the filter capacitors and power circuits should discharge within 30 seconds. However, power circuit failures can occur, so you should always assume that high voltage might still exist after shutdown. Verify that power is off using AC and DC voltmeters before making contact.

6.2 Preventative Maintenance

UPS operator maintenance consists of the basic tasks in this section. Other maintenance functions require factory certified personnel.

6.2.1 Maintaining an Operator's Log

Careful record-keeping ensures proper maintenance of the unit and assists in the correction of any abnormal conditions.

The operator's log should contain the following information:

- Date of system start-up
- Dates that battery maintenance was performed
- Dates that input, output, and battery status readings were checked, and the values displayed for these readings
- Dates and summaries of all communications with factory Service personnel.
- A copy of Service Log Sheet is provided with each unit, the form 6002-2017-04 can also be requested by calling customer service support.

6.2.2 Periodically Testing the UPS

The unit should be manually exercised on a periodic basis (for example, once every three months) to force the UPS unit to transfer to the battery and return to main power. This process activates self-diagnostic testing that can reveal conditions that require attention.

6.2.3 Maintaining the Batteries
DANGER: The battery circuit breaker operates at the rated battery voltages at all times. A tripped battery circuit breaker indicates a serious problem that may result in serious injury or damage to the equipment. Determine the cause and take appropriate action as necessary. For example, check for a short circuit in the battery. For guidance, email Power Services at service@pwrservice.com

DANGER: The battery electrolyte is a diluted sulfuric acid that is harmful to the skin and eyes. It is electrically conductive and corrosive. Wear full eye and hand protection along with protective clothing. If the electrolyte contacts the skin, wash it off immediately with water. If electrolyte contacts the eyes, flush thoroughly and immediately with water. Seek immediate medical attention. Spilled electrolyte should be washed down with a suitable acid neutralizing agent. One common practice is to use a solution of approximately one pound (450 grams) of bicarbonate of soda to approximately one gallon (4 liters) of water. The bicarbonate of soda solution should be applied to the spill until evidence of chemical reaction (foaming) has ceased. The resulting liquid should be flushed with water and the area dried.

DANGER: Do not dispose of a battery or batteries in a fire. The batteries may explode causing death or serious injury.

Caution: Do not substitute batteries without the express approval of the manufacturer

Caution: Lead-acid batteries contain hazardous materials and must be handled, transported, and recycled or scrapped in accordance with federal, state, and local regulations. Since lead is a toxic substance, lead-acid batteries should be recycled rather than scrapped.

Caution: A battery can present a risk of electrical short and high short circuit current. The following precautions should be observed when working on or around batteries:

- Remove watches, rings, necklaces, or other metal objects.
- Use only tools with insulated handles.
- Wear rubber insulating gloves and boots.
- Do not lay tools or metal parts on top of batteries.
- Disconnect charging source prior to connecting or disconnecting battery terminals.
- Verify that battery cabinets are grounded properly.

DANGER: Do not ground battery positive or negative.
Caution: Lead-acid batteries can present a risk of fire because they generate hydrogen gas. The following safety procedures must be followed:

- Do not smoke when near batteries.
- Do not cause flame or sparks in battery areas.
- Discharge static electricity from your body before touching batteries by first touching a grounded metal surface.

Use of any non-Factory Tested/UL924 Certified batteries, including those with similar brand name and part number, will void the systems UL 924 Safety Certification Listing. Please call or e-mail Power Services for tested/certified replacement batteries.

Caution: The average annual ambient temperature of the batteries shall not exceed 77° F.

Caution: Battery Cell temperatures shall not exceed 92° F for more than 30 days annually.

Caution: Batteries are required to be installed and charged within 90 days of shipment.

6.2.4 Batteries

Although the individual batteries are sealed and require only minimal maintenance, the batteries should be given a periodic inspection and electrical check. Checks should be performed annually to ensure years of trouble-free service. Tightness of battery terminal connections should be tested to recommended torque values. Battery Service Agreements are available through www.800pwrsrvc.com. For information about battery environment specifications, see Table 4-3.

Service Agreements are available through www.800pwrsrvc.com. For information about battery environment specifications.

To qualify for battery-warranty replacement, you will need to show records of the battery maintenance history including battery numbers, battery voltages (individual cells), terminal torque measurements and dates of maintenance.

6.2.5 Power Connections

Check for corrosion and connection integrity. Visually inspect wiring for discolored or cracked insulation. Clean and/or re-torque as required.

All battery terminal connections must be tightened with the proper torque value set in accordance with the torque value on the Battery Connection Diagram provided with each system.
Use the correct torque tool to tighten the terminal bolts shown on the drawings on the battery cabinet. Use all hardware provided with the batteries.

Caution: Torque all connections in accordance with specified values provided. Failure to do so can create an unsafe condition or fire hazard.

6.2.6 Air Filters

Air filters must be replaced every 3 months or sooner depending on environment condition.

6.2.7 Weatherproof stripping or sealant

All weatherproof stripping or sealant requires periodic visual inspections and replacement ensure the units stays free of dust and moisture.

6.2.8 Battery Terminals

Check for discoloration, corrosion, and connection integrity. Clean and tighten as necessary.

To access battery terminals:

1. Remove the top strapping material located at the lower front of the battery shelf.
2. Pull the battery forward to access the battery connections.
3. Disconnect the cables connected to the battery, and then use a protective boot or electrical tape to insulate the cables to prevent accidental shorts.
4. Before replacing the battery connections, clean and re-torque the connection hardware.

6.3 FRU Replacement

Some components can be replaced by qualified factory-trained service personnel only. These components are referred to as Field Replaceable Units (FRUs).

Refer to Table 6-1 for ordering the replacement parts from the factor email service@800pwrsrcvc.com and provide the unit’s Serial No. from the Start-Up label located on the right front door. Replacement parts must be replaced by certified factory-trained service personnel only.

Electrostatic Sensitive: Circuit boards and IGBTs contain Electrostatic Discharge Susceptible (ESDS) components. Handle and package ESDS devices in accordance with JEDEC standard JESD625-A. Use a grounded ESD wrist strap when handling the devices and circuit boards. Always package components and circuit boards in static-dissipative plastic bags before transporting even if a device has failed. Failure to do so could result in further damage, complicating repair and failure analysis.

Table 6-1. Replacement Parts
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Designator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat sink assembly</td>
<td>Power board (A1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bypass static switch (PB2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverter static switch (PB1)</td>
</tr>
<tr>
<td>2</td>
<td>Power board</td>
<td>A1</td>
</tr>
<tr>
<td>3</td>
<td>Bypass static switch</td>
<td>PB1</td>
</tr>
<tr>
<td>4</td>
<td>Inverter static switch</td>
<td>PB2</td>
</tr>
<tr>
<td>5</td>
<td>Input/output/battery terminal block for customer use</td>
<td>TB1, TB2, TB3</td>
</tr>
<tr>
<td>6</td>
<td>Input choke</td>
<td>L1, L3</td>
</tr>
<tr>
<td>7</td>
<td>Output choke</td>
<td>L2</td>
</tr>
<tr>
<td>8</td>
<td>Dc choke</td>
<td>L4</td>
</tr>
<tr>
<td>9</td>
<td>The Frequency Noise Filter Capacitors for output Power</td>
<td>C1, C2, C3</td>
</tr>
<tr>
<td>10</td>
<td>Control board</td>
<td>A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1625-288-XX (Standard)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Figure 6-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Event log: Figure 6-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast transfer: Figure 6-5</td>
</tr>
<tr>
<td>11</td>
<td>LCD display board</td>
<td>A5</td>
</tr>
<tr>
<td>12</td>
<td>Input contactor</td>
<td>K1</td>
</tr>
<tr>
<td>13</td>
<td>Terminal Block to remove heatsink assembly</td>
<td>TB4</td>
</tr>
<tr>
<td>14</td>
<td>Fan transformer</td>
<td>T3</td>
</tr>
<tr>
<td>15</td>
<td>Control power transformer</td>
<td>T2</td>
</tr>
<tr>
<td>16</td>
<td>Control transformer fuse</td>
<td>F1</td>
</tr>
<tr>
<td>17</td>
<td>Fan fuse</td>
<td>F2</td>
</tr>
<tr>
<td>18</td>
<td>Fan(s)</td>
<td>B1 thru B6</td>
</tr>
<tr>
<td>18</td>
<td>Optional output isolation transformer</td>
<td>T1</td>
</tr>
<tr>
<td>19</td>
<td>Input breaker</td>
<td>CB3</td>
</tr>
<tr>
<td>20</td>
<td>Battery breaker</td>
<td>CB1</td>
</tr>
<tr>
<td>21</td>
<td>Output breaker</td>
<td>CB2</td>
</tr>
<tr>
<td>22</td>
<td>Output distribution breaker</td>
<td>CB4 and up</td>
</tr>
<tr>
<td>23</td>
<td>Maintenance-free lead acid battery(s)</td>
<td>Battery 1 thru 20</td>
</tr>
</tbody>
</table>
6.3.1 Replacing the Heatsink Assembly

To replace Heatsink Assembly:

Disconnect wires:

<table>
<thead>
<tr>
<th>A4-P1</th>
<th>PB2-1</th>
<th>PB2-2</th>
<th>A3-P1</th>
<th>PB1-2</th>
<th>PB2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>P7</td>
<td>J1</td>
<td>Ribbon Cable</td>
<td>TB4-B (All wires)</td>
<td>P1 (when fast transfer option is used)</td>
</tr>
</tbody>
</table>

1. Remove heatsink (2) mounting screws and slide the assembly out
2. Use assembly handles to pull the assembly out
 ! Caution: Do not use the cables as handle as this will cause damage
3. Install the replacement heatsink onto the tray and wire it to the unit by completing step 1-3 in reverse (see Figure 6-1 and Figure 6-2).
4. Verify all connections are tight and correct prior to starting up the unit.

Figure 6-1. Heatsink Assembly (units up to 5kw)
Figure 6-2. Heatsink Assembly (all others)
6.3.2 Replacing the Control Board (1625-288-XX) Standard

The control board is located on the inside right door for up to 5kw units and on the swing-out panel on top front for all others.

Table: Replacing the Control Board

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Remove 4 PCBA Cover mounting screws and remove the Cover.</td>
</tr>
<tr>
<td>2.</td>
<td>Look at the PCBA 1625-288-XX on the unit and take note of all the wires connected to the PCBA. Disconnect all the wire connectors from PCBA 1625-288-XX.</td>
</tr>
<tr>
<td>3.</td>
<td>Hold the PCBA and remove the 4 standoffs. Remove the PCBA.</td>
</tr>
<tr>
<td>4.</td>
<td>Install the replacement PCBA 1625-288-XX by completing steps 1 to 3 in reverse. Torque value 5 in-lbs.</td>
</tr>
</tbody>
</table>

Diagram: Control Board (standard)

Caution: This mounting screw creates a ground connection. A loose screw will create inadequate ground connection, causing problems.

Figure 6-3. Control Board (standard)
6.3.3 Replacing the Control Board (1625-344-XX) Event Log option

This control board is located on the inside right door for up to 5kw units and on the swing-out panel on top front for all others when the event log option is used.

Figure 6-4. Control Board (Event Log)
6.3.4 Replacing the (1625-405, 406, 407-XX) Fast Transfer option

This control board is located on the inside right door when fast transfer option is used.

<table>
<thead>
<tr>
<th>Step</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Disconnect all the connectors from PCBA 1625-405-XX and 1625-406-XX.</td>
</tr>
<tr>
<td>2.</td>
<td>Remove the 4 mounting screws and remove PCBA 1625-405-XX. Then, remove the 4 standoffs and remove PCBA 1625-405-XX.</td>
</tr>
<tr>
<td>3.</td>
<td>Install the replacement PCBA’s 1625-405-XX and 1625-406-XX by completing step 1, and step 2 in reverse. Torque value 5 in-lbs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector</th>
<th>To PCBA 1625-405</th>
<th>To PCBA 1625-406</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overlay cable</td>
<td>n/a</td>
<td>J7</td>
</tr>
<tr>
<td>A101</td>
<td>n/a</td>
<td>J8</td>
</tr>
<tr>
<td>A102</td>
<td>n/a</td>
<td>J4</td>
</tr>
<tr>
<td>A103</td>
<td>n/a</td>
<td>J2</td>
</tr>
<tr>
<td>A104</td>
<td>n/a</td>
<td>J1</td>
</tr>
<tr>
<td>A96</td>
<td>J7</td>
<td>n/a</td>
</tr>
<tr>
<td>A95</td>
<td>J5</td>
<td>n/a</td>
</tr>
<tr>
<td>A94</td>
<td>J3</td>
<td>n/a</td>
</tr>
<tr>
<td>A93</td>
<td>J2</td>
<td>n/a</td>
</tr>
</tbody>
</table>

4. Connect PCBA 1625-405-XX to PCBA 1625-406-XX.

![Figure 6-5. Fast Transfer option](image)

6.3.5 All Other Parts

Verify that the cables are marked before disconnecting. Replace the defective part with the new part. Reconnect wiring the same way as it was disconnected.
6.4 Calling for Service

Call for service if you encounter any of the following conditions:

- Repeated start-up attempts are unsuccessful.
- A UPS fault occurs that cannot be cleared.
- Normal operation of the critical load repeatedly causes an overload condition. This is not a UPS fault. A qualified person must analyze the total load connected to the UPS to prevent unit failure. Momentary overload conditions will be handled within the parameters of the UPS unit but sustained overloads will cause the UPS Unit to fail.
- Any indicators or alarms operate abnormally or continuously.
- Any other abnormal function of the system occurs.
- If any abnormal battery condition is detected.
- When you are unsure of what action to take.

If any of the above occurs:

Fill out a service request form by visiting www@800pwrsrvc.com or email service@800pwrsrvc.com

DANGER: Lethal voltages are present inside the equipment even when there appears to be no input power to the unit. Protect yourself from the risk of electrocution by referring service to qualified personnel only.

6.4.1 Customer Service and Technical Support

Start-up, UPS maintenance, battery maintenance, and preventative maintenance programs are available through your Factory sales representative by service@800pwrsrvc.com

6.4.2 Start-Up Services

Various start-up services are available. Contact your sales representative or email us at service@800pwrsrvc.com

6.4.3 Maintenance Agreements

Standard Full Service, 24/7 Full Service, and Extended On or OFF Site Maintenance agreements are available. Contact your sales representative or email service@800pwrsrvc.com

6.4.4 Warranties

If you have any questions about the warranty on your UPS System or the batteries contact or email us at service@800pwrsrvc.com or contact Customer Service and Support at 1-800-PWR-SRVC (800-797-7782).
Chapter 7. Troubleshooting

This chapter describes how to use the LCD display panel to perform troubleshooting suggestions.
7.1 Reset Instructions

Due to facility and/or incoming power abnormalities, prior to initiating a service call please attempt a System “RESET” by following the Reset Instructions described below:

- **Instructions:**
 1. Turn off all system output breakers.
 2. Turn off the systems battery breaker.
 3. Turn off MAIN FEED breaker that supplies input voltage to the unit.
 4. Check the systems LCD display to make sure it is completely off.
 5. When it has been verified to be completely off, turn the systems main feed input breaker back on.
 6. Wait for the contactor to close and wait for the LCD display to cycle two times.
 7. If the LCD display reads “UPS NORMAL”, turn on the systems battery breaker.
 8. If the LCD display still reads “UPS NORMAL” after turning on the battery breaker, commence to turning on the system output breakers.
 9. Check to see if your output voltage is back to normal.
 10. If the LCD display still reads “UPS NORMAL” and all your output voltages are back to normal, your system has been fully reset. Close and lock the system doors.

7.2 Troubleshooting Guide and System Alarms

<table>
<thead>
<tr>
<th>Case</th>
<th>Symptoms</th>
<th>LCD Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attempt to turn on and unit remains in BYPASS and LCD screen shows input OK</td>
<td>![LCD Display Image]</td>
</tr>
<tr>
<td></td>
<td>Output is short-circuited</td>
<td>Replace Heatsink assembly. If problem still persists, go to next step</td>
</tr>
<tr>
<td></td>
<td>Heatsink assembly has failed</td>
<td>Disconnect all loads then turn the unit back on. If it runs normally, request facility manager to check output loads for possible short. If problem still persists, go to next step</td>
</tr>
<tr>
<td></td>
<td>Not Listed</td>
<td>email service@800pwrsvr.com for further action.</td>
</tr>
<tr>
<td>2</td>
<td>Connector P3 on control PCB gets loose</td>
<td>Check connector for proper seating. If problem still persists, go to next step</td>
</tr>
<tr>
<td>Case</td>
<td>Symptoms</td>
<td>LCD Display</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>Contactor keeps cycling or chattering</td>
<td>UPS ALARM @ ## KW
INPUT BAD @ CHRG ON
BATTERY OK @ DC OK
ON INVERTER @ OUT OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unit went into FAILURE mode</td>
<td>UPS ALERT @ ## KVA
INPUT OK @ CHRG OFF
BATTERY LOW @ DC UV
ON BYAPSS @ OUT BAD</td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td>UPS ALERT @ ## KVA
INPUT OK @ CHRG OFF
BATTERY LOW @ DC UV
ON BYAPSS @ OUT BAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Attempt to turn on and unit remains in BYPASS_ and LCD screen shows input BAD**
- **Control PCB failure**
- **Not listed**

Causes

- Connector P3 has bad connection
- Control PCB failure
- Not listed

Action

- Unplug P3, verify voltages are present across pin 1 & 2 and 3 & 4 for 3-phase. If no voltage is present, go to next step
- Replace control PCB. If problem still persists, go to next step
- Email service@800pwrsrvc.com for further action.
7.3 Using the LCD Display Panel

All units have the screens in Figure 7-2 and Figure 7-3. Units equipped with the optional output transformer also have the screen in Figure 7-4. All screens are updated continuously to provide you with up-to-the-minute status information.

When input power is applied to the unit, the LCD display panel lights up and displays the following message:

![Figure 7-1. Message That Appears at Power-on](image)

If your LCD display panel is not lit, the unit has a problem. Contact the factory service at via email service@800pwrsrcv.com for further action.

7.3.1 Default Screen 1

Figure 7-2 shows the first default screen. Table 7-1 describes the messages.

![Figure 7-2. Default Screen 1](image)
Table 7-1. Description of Default Screen 1

<table>
<thead>
<tr>
<th>Line</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UPS NORMAL @ 15 KVA</td>
<td>15 KVA indicates the KVA rating. STAND BY or NORMAL = normal operating modes. STAND BY ALARM FAILURE = UPS alarm condition. FAILURE = unit failed or persistent alarm condition. Shut off the system and wait for the LCD to go dark, then restart the unit.</td>
</tr>
<tr>
<td>2</td>
<td>INPUT OK @ CHG ON</td>
<td>Shows one of the following conditions: INPUT OK = input within an acceptable range. INPUT BAD = input out of range. CHRG ON = charger on. CHRG OFF = charger is off. This occurs if the input capacitor is open or the system is in a failure mode (UPS ALARM).</td>
</tr>
<tr>
<td>3</td>
<td>BATTERY OK @ DC OK</td>
<td>Shows one of the following conditions. Note that the typical DC bus voltage should be higher than the battery voltage. BATTERY OK = battery voltage within an acceptable range. BATTERY OV = battery voltage high. This is normal when the battery is charging. BATTERY LOW = battery voltage low. Recharge battery. DC OK = DC bus voltage within an acceptable range. DC OV = DC bus voltage too high (UPS ALARM). DC UV = DC bus voltage too low (UPS ALARM).</td>
</tr>
</tbody>
</table>

7.3.2 Default Screen 2

Figure 7-3 shows the second default screen. **Table 7-2** describes the messages.

Figure 7-3. Default Screen 2

Table 7-2. Description of Default Screen 2

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shows one of the following: If an output transformer is not used, shows the output voltage and power in watts. If an output transformer (T1) is used, shows the primary voltage of the output transformer (T1) (typically 208 VAC).</td>
</tr>
<tr>
<td>2</td>
<td>Shows input volts and amps.</td>
</tr>
<tr>
<td>3</td>
<td>Shows the internal DC bus condition (for factory use).</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 4 | Shows the battery voltage.
 | (+) = current in Amps indicates charging Amps.
 | (-) = discharging Amps. |

7.3.3 Default Screen 3

If the optional output transformer is installed, the following screen shows the multiple output voltages. *Figure 7-4* shows the first default screen.

![Figure 7-4. Default Screen 3](image-url)
Chapter 8. Specifications

This chapter provides the general specification of the system
Typical Specifications (Input / Output Current)

1-Phase Output Current (0.7 PF RATED)

<table>
<thead>
<tr>
<th>kVA/kW</th>
<th>3/2.1</th>
<th>5/3.5</th>
<th>7.5/5.25</th>
<th>10/7</th>
<th>12.5/8.75</th>
<th>15/10.5</th>
<th>20/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (Vac)</td>
<td>18</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Max Current</td>
<td>25</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

1-Phase Output Current (1.0 PF RATED)

<table>
<thead>
<tr>
<th>kW</th>
<th>3.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.5</th>
<th>8.0</th>
<th>10.0</th>
<th>12.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (Vac)</td>
<td>18</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Max Current</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

1-Phase Output Current (0.7 PF RATED)

<table>
<thead>
<tr>
<th>kW</th>
<th>15.0</th>
<th>17.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (Vac)</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Max Current</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Specification (General)

Input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Regulation</td>
<td>+10% -15%</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>60 Hz ±3%</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.98 to 1.0 (Typical)</td>
</tr>
<tr>
<td>Overcurrent protection</td>
<td>Electronic / Circuit Breaker (Optional)</td>
</tr>
<tr>
<td>Number of wires</td>
<td>2 Wires plus Ground</td>
</tr>
<tr>
<td>Power connection</td>
<td>Hard Wired (Terminal Block)</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (vac)</td>
<td>Single Phase, 120/208/240/277 VAC</td>
</tr>
<tr>
<td>Voltage Regulation</td>
<td>±3% No Load to Full Load; ±3% High Line to Low Line</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>60 Hz ±0.25 Hz (When on Inverter)</td>
</tr>
<tr>
<td>Waveshape</td>
<td>Sine Wave</td>
</tr>
<tr>
<td>Harmonic distortion</td>
<td><5% THD; <3% Single Harmonic</td>
</tr>
<tr>
<td>Crest factor</td>
<td>Up to 3 to 1</td>
</tr>
<tr>
<td>Power factor</td>
<td>0.65 Lagging or Leading to Unity</td>
</tr>
<tr>
<td>Overload</td>
<td>115% overload for 5 to 10 minutes, 125% for 30 second.</td>
</tr>
<tr>
<td>Protection</td>
<td>Electronic / Circuit Breaker</td>
</tr>
<tr>
<td>Noise rejection</td>
<td>-120 dB Common Mode; -60 dB Normal Mode</td>
</tr>
<tr>
<td>Number of wires</td>
<td>2 Wires plus Ground for Single Voltage output, 3 Wires plus Ground for Dual Voltage output</td>
</tr>
<tr>
<td>Power connection</td>
<td>Hard Wired (Terminal Block)</td>
</tr>
</tbody>
</table>

Battery

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery run time</td>
<td>90 minutes minimum</td>
</tr>
</tbody>
</table>
Battery type
Sealed, Maintenance-Free, AGM, VRLA type

Unit Rating (KW)
<table>
<thead>
<tr>
<th></th>
<th>2.1 / 3</th>
<th>3.5 / 5</th>
<th>6</th>
<th>5.25 / 7.5</th>
<th>8</th>
<th>7 / 10</th>
<th>8.75 / 12.5</th>
<th>10.5 / 15</th>
<th>14 / 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal dc voltage</td>
<td>96 VDC</td>
<td>120 VDC</td>
<td>144 VDC</td>
<td>120 VDC</td>
<td>192 VDC</td>
<td>192 VDC</td>
<td>192 VDC</td>
<td>240 VDC</td>
<td>240 VDC</td>
</tr>
</tbody>
</table>

Overcurrent protection
Circuit Breaker

Packaging
Batteries Housed in Same Enclosure and/or additional battery cabinet for other battery run time

Monitoring and communications

LCD Screen
Input Voltage; Battery Charger; UPS Output; On Battery; Low Battery; Summary Alarm

Indicators
LCD Display Panel (Back lit)

Relay interface
Dry Contacts for: Low Battery, On Bypass, Summary Alarm, Input Fail

Contact rating
125 Volts (AC or DC) Maximum; 1.25 Amperes Maximum; 30 Watts / 50 VA Maximum

Interface connection
Hard Wired (Terminal Block)

Environmental

Surge with standability
ANSI C62.41-1980 categories A & B

Operating temperature
Meets NEMA requirements

Operating relative humidity
0 to 95% non-condensing

Altitude
-1000 to +13000 feet, derate 10% for each additional 305 meters

Cooling
Air cooled-forced fan

Physical

Unit Rating
3KVA / 3KW 5KVA / 5KW 6KW 7.5KVA / 7.5KW 8KW 10KVA / 10KW 12.5KVA / 12.5KW 15KVA / 15KW 20KVA / 17KW

Dimensions (W x H x D in Inches)
39 x 73.5 x 20 51 x 77.5 x 33.5

Construction
Painted Steel Enclosure, 3 point lockable front door, Full length hinged, for outdoor installation,

Color
Neutral

Accessibility
Front all Servicing is through the front no side or rear access required
<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable entry</td>
</tr>
<tr>
<td>Bottom only</td>
</tr>
<tr>
<td>Mounting</td>
</tr>
<tr>
<td>Four (4) mounting holes are provided for anchoring to floor, Hardware to be supplied by others</td>
</tr>
</tbody>
</table>

Specification subject to change without prior notifications
APPENDIX A - BATTERY CONNECTIONS

This chapter shows typical battery connection diagrams. The figures are provided for electrical connection only and do not necessarily match the actual battery layout in your unit. The arrangement may be different from the figures. Refer to your system battery connection diagram provided inside front door packet.

⚠️ DANGER: The use of a physically damaged battery can cause a catastrophic system failure and can even result in a fire or explosion that could endanger life and property. Before accepting a battery shipment from the carrier, please read and follow these instructions:

1. Thoroughly inspect each battery for any signs of damage. If there is any damage, reject the shipment and notify the manufacturer. If possible, photograph the damage for future reference.

2. As you unpack the pallet or container, check each battery box for damage on all sides, the top and bottom. If there is any sign of damage, photograph the damage if possible, and contact Power Service.

3. Before you install each battery in the cabinet, remove it from its carton and thoroughly inspect it again on every side, the top and bottom for any signs of physical damage including, but not limited to, cracks, chips, leaks, bulges, and so forth.

4. If a battery is dropped or makes hard contact with any object, inspect it again.

5. Batteries are heavy, so exercise care when lifting them on to the shelves.

6. Use of any non-Factory Tested/UL924 Certified batteries, including those with similar brand name and part number, will void the systems UL 924 Safety Certification Listing. Please call or e-mail Power Services for tested/certified replacement batteries.

7. If at any time you have any questions regarding the condition of a battery, set it aside and notify the manufacturer at 800-PWR-SRVC (800-797-7782). Do not use a questionable battery under any circumstances, even temporarily.
96-Volt Nominal DC Voltage, 1 String of 8 Battery in 39" cabinet (Typical)
120-Volt Nominal DC Voltage, 1 String of 10 Battery in 39" cabinet (Typical)
120-Volt Nominal DC Voltage, 1 String of 10 Battery in 51" cabinet (Typical)
144-Volt Nominal DC Voltage
1 String of 12 Battery in 51” cabinet (Typical)
192-Volt Nominal DC Voltage, 1 String of 16 Batteries in 51” cabinet (Typical)
192-Volt Nominal DC Voltage, 2 String of 16 Batteries in 51” cabinet (Typical)
Battery Connections

240-Volt Nominal DC Voltage, 1 String of 20 Batteries in 51” cabinet (Typical)
APPENDIX B - OPTIONS

This appendix provides detailed information about the options available for the Single-Phase Lighting Inverter.
B.2 Internal Manual Bypass Switch (Make Before Break)

Internal Manual Maintenance Bypass Switch is a (3) position “UPS”, “SBS” and “BYPASS” rotary switch, when set to “BYPASS” provides power directly from UPS main input feed to the load which ensures continuous power to critical load without interruption.

➢ To move from UPS mode to Bypass mode
1. Turn off the battery breaker.
2. Move the manual bypass switch to the Bypass position.

➢ To move the Bypass mode to UPS mode
1. Turn off the battery breaker.
2. Move the manual bypass switch to the UPS position.
3. Turn on the battery circuit breaker for normal operation.

B.3 Form “C” N/O Contacts for Alarms

The optional alarm relay board has a terminal strip TB for user connection to the individual alarm contacts. The Remote Contact Board includes isolated Form C contacts for the alarm signals in the following table.

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-1</td>
<td>LOW BATTERY</td>
<td>N/O contact that closes when the unit is on battery operation and the batteries approach inadmissible discharge status.</td>
</tr>
<tr>
<td>TB-2</td>
<td>ON BYPASS</td>
<td>N/O contact that closes when the unit transfers the load to static by-pass.</td>
</tr>
<tr>
<td>TB-3</td>
<td>SUMMARY ALARM</td>
<td>N/O contact that closes when the unit has any one of the following alarm conditions. Internal Failure, System Overheat, Battery under-voltage.</td>
</tr>
<tr>
<td>TB-4</td>
<td>INVERTER ON</td>
<td>N/O contact that closes when inverter turns on</td>
</tr>
<tr>
<td>TB-5</td>
<td>INPUT FAIL</td>
<td>N/O contact that closes upon loss of input power.</td>
</tr>
<tr>
<td>TB-6</td>
<td>COMMON</td>
<td>Common Terminal</td>
</tr>
</tbody>
</table>

Refer to APPENDIX B- Figure 1 for interface terminal location

B.4 Dry Contact, N/O or N/C Contact with Isolated Common

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-18-1 (COM)</td>
<td>SUMMARY ALARM</td>
<td>When the unit has any one of the following alarm conditions. Internal Failure, System Overheat, Battery under-voltage.</td>
</tr>
<tr>
<td>TB-18-2 (N/O)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Options

<table>
<thead>
<tr>
<th>Terminal Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB-18-3 (N/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-4 (COM)</td>
<td>ON BYPASS</td>
<td>When the unit transfers the load to static by-pass.</td>
</tr>
<tr>
<td>TB-18-5 (N/O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-6 (N/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-7 (COM)</td>
<td>LOW BATTERY</td>
<td>When the unit is on battery operation and the batteries approach inadmissible discharge status.</td>
</tr>
<tr>
<td>TB-18-8 (N/O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-9 (N/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-10 (COM)</td>
<td>INVERTER ON</td>
<td>Upon Inverter turned ON</td>
</tr>
<tr>
<td>TB-18-11 (N/O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-12 (N/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-13 (COM)</td>
<td>ON BATTERY</td>
<td>Upon loss of input power.</td>
</tr>
<tr>
<td>TB-18-14 (N/O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-15 (N/C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB-18-16 to TB18-18</td>
<td>Spare</td>
<td></td>
</tr>
</tbody>
</table>

Refer to APPENDIX B- Figure 1 for interface terminal location

B.5 Battery Breaker alarm

It provides a signal when the battery breaker is in OFF position.

B.6 External Wrap-around Manual Bypass Switch (same Input and Output Voltage)

The external maintenance bypass switch is mounted in a box that is field-installed and can be installed on adjacent wall. The single control simplifies the operation of the external manual bypass switch; however, operating instructions must be carefully observed before using the switch.

For ratings, wiring diagram, and enclosure dimensions, (see the figures on the following pages).

To access the operator control switch for the external manual bypass switch, open the cabinet front door. The manual bypass switch has three positions:

- **UPS** – connects the critical load to the output of the inverter and establishes normal operation.
- **SBS** – connects power to the critical load through the static bypass switch (for 0° phase angle synch).
- **BYPASS** – connects power to the critical load through the bypass switch to bypass the inverter.

Switch contacts are 3-phase L-L “MAKE BEFORE-BREAK”. Contacts Marked **AUTO** are closed in the "AUTO" position. Contacts Marked **MAN** are closed in the "MAN" position. Use the wrap-around bypass switch with same input and output voltage. For different input/output systems, use a switch
with an external transformer. A wraparound bypass switch can be used with systems without any “built in secondary distribution circuit breaker” within the unit.

Enclosure Dimensions

<table>
<thead>
<tr>
<th>Amp</th>
<th>Voltage Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D MTG</th>
<th>E MTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 AMP</td>
<td>600V</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>12</td>
<td>16.75</td>
</tr>
<tr>
<td>110 AMP</td>
<td>600V</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>16.75</td>
</tr>
<tr>
<td>175 AMP</td>
<td>600V</td>
<td>20</td>
<td>20</td>
<td>12</td>
<td>18.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Note: Do not leave the switch in “SBS” position

Note: This option is offered for same Input / Output voltage only.

Note: Wraparound bypass switch can’t be used with units that have “Internal Secondary Distribution Circuit Breaker”
To install the maintenance bypass switch

1. Always allow front access to the MBS box for maintenance and servicing.
2. Electrical codes require that the maintenance bypass switch box be installed with no less than 3 feet at the front of the cabinet.
3. Side and rear panels do not require service clearance; however, side vents must not be blocked.
4. Verify all power connections are tight.
5. Verify all control wire terminations are tight.
6. Verify all power wires and connections have proper spacing between exposed surfaces, phase-to-phase and phase-to-ground.
7. Verify that all control wires are run in individual, separate steel conduit.

DANGER: All power connections must be completed by a licensed electrician who is experienced in wiring this type of equipment. Wiring must be installed in accordance with all applicable national and local electrical codes. Improper wiring may cause death, injury, explosion, fire, or damage to the equipment. Verify that all incoming high and low voltage power circuits are de-energized and locked out before installing cables or making any electrical connections.
B.7 Audio Alarms with Silence Switch

The audio alarms with silence switch provides an audible warning signal, acknowledge, and reset for Input Fail, On Bypass, Inverter On, Low Battery and Summary Alarm for any of the foregoing alarm conditions.

B.8 Remote Status Panel

The remote UPS status panel is a console mount style box that can also be wall mounted. It comes in a black finish and includes a 10-foot-long “DB” connector signal cable. An optional length cable up to 1000-feet long is also available.

- **INPUT OK** = input power is within acceptable range.
- **INVERTER ON** = inverter is ON.
- **ON BYPASS** = unit is in bypass mode.
- **ON BATT** = unit is operating from battery power.
- **LOW BATT** = battery voltage is low prior to shut down.
- **SUM ALARM** = unit is experiencing a critical alarm such as an over-temperature condition.
- **HORN** = audible warning for an alarm condition.
- **SILENCE SWITCH** = silences the audible warning.

An LED TEST push-button allows you to test the LEDs.

Refer to APPENDIX B- Figure 1 location of the interface)
B.9 Transient Voltage Surge Suppressor (TVSS)

The TVSS contains energy-absorbing components designed for specific line configurations. If protection components become damaged by absorbed transients, the device shows a reserve flag that indicates a need for replacement. The unit remains operational, but without surge protection.

B.10 Offline Inverter Operation

The offline inverter operation consists of a slow transfer unit and a fast transfer unit.

B.11 Normally ON/OFF Output Aux. Circuit Breakers

These 1-pole, 20A circuit breakers are designed to protect customer circuits and are offered as the following options:

- Normally ON C.B. option
- Normally OFF C.B. option
- Normally OFF Delay C.B. option

Standard output aux breakers are 10KAIC @ 120/240 volt, 6 KAIC @ 277 volt. Normally, ON/OFF.

B.12 Main Input CB Standard/Higher KAIC

This option consists of an input circuit breaker, standard, and higher KAIC.

B.13 Main Output CB Standard/Higher KAIC

This option consists of an output circuit breaker with higher KAIC.

Higher KAIC Normally ON/OFF Aux Output Circuit Breaker

Molded case type.

B.14 Power Flow Mimic

The power flow mimic option allows unit power status verification at-a-glance. Six LEDs indicate the following conditions:
Options

- **Green** = Input OK or inverter is ON.
- **Yellow** = On battery, or on bypass.
- **Red** = Low battery or summary alarm.

![Power Flow Mimic](image)

B.15 Global Monitoring Systems (GMS)

4. Monitoring, Local On UPS – Event log

The control and monitoring PCBA collect event data and displays up to 100 of the most recent date- and time-stamped events. When the log is full, the oldest events are rolled off.

Keypad functions and resulting screens are presented below:
Options

- **LOG** – press to display the event log. All stored events scroll continuously on display. Press this key again to redisplay the main menu.

```
10/04/16.  16  OVERTEMP
10/04/16.  16  INP UV
10/04/16.  08  INP UV
10/04/16.  14  INP UV
```

Example of Logged Events

- **FREEZE** = press to freeze the default monitoring and alarms screen temporarily. Press this key again to return the display to the initial scrolling menu.

```
UPS NORMAL  @  20KVA
INPUT OK     @  CHRG ON
BATTERY OK   @  DC OK
ON INVERTER  @  OUT OK
```

Example of Status Screen

- **INFO** = press to display system data on the screen. Press this key again to return to the default screen.

```
MINUTE ON BATT:  00072
SYSTEMS HOUR:   00256
BATT. EVENT:     00019
TEMPERATURE:     32 C
```
Example of System Info Screen

- **RESET** and **INFO** = press these keys at the same time to clear the display.

1. Monitoring, Local On UPS - Aux CBs Trip Monitor

Trip signals from the breakers are displayed on the circuit breaker trip screen. The circuit breaker is a part of default monitoring and alarm display that scrolls continuously when the unit is in operation.
B.15.1 Local Monitoring via PC with RS-232

The local monitoring via PC with RS-232 option requires a PC and LabView monitoring software. The software is provided on a disc that installs easily on any Windows operating system. An attached cable of a specified length plugs into a PC serial port and connector J6 on the Control Board located inside right door. LabView software must be configured to use COM port 1.

The LabView software translates data protocol coming to COM port from an active unit via the RS-232/RS-485 interface and displays the parameters and active alarms on a PC monitor. The following figure shows an example of a PC screen with measured parameters and actual unit status.

B.15.2 Local Monitoring via PC with RS-485

This option is similar to the local monitoring via PC with RS-232 option, except that an RS-485 cable is used instead of an RS-232 cable.

B.15.3 RJ45 Ethernet connection
B.16 Simple Network Management Protocol

This option consists of a basic SNMP NetAgent mini-external device as an advanced SNMP NetAgent device.

This option is available in the following offerings:
- Basic NetAgent SNMP with WI-FI HUB application
- Advance NetAgent SNMP with WI-FI HUB.
- Advance NetAgent SNMP with GPRS mobile modem.
- Advance NetAgent SNMP with dial-up modem

The following figures show examples of how this option can be used. In these figures, NetAgent mini and NetAgent II SNMP modules are installed inside the front door of the inverter cabinets.
B.17 Battery Thermal Runaway Control

This option provides protection in case of over-temperature condition in the battery compartment. If such a condition occurs, this option shuts off the charger. Charging resumes when the temperature returns to normal. A dry contact (N/O, N/C) relay interface is provided for this option for user interface per following:
### Terminal Number	Signal	Description
TB121-1 | N/C | N/C contact that opens when the critical temperature has reached
TB121-2 | COM | Common
TB121-3 | N/O | N/O contact that closes when the critical temperature has reached

Refer to APPENDIX B- Figure 1 for terminal block location

B.18 Heater Strip with Adjustable Thermostat

The option provides flexibility of installing a heater with thermostat for adjusting temperature range to control harsh environment ambient temperature

B.19 Battery String Monitoring (Wireless)

The wireless battery monitoring system continuously monitors and communicates with the data collector to provide Real-time data. It analyzes and stores battery string voltage, current and (optional) cabinet temperature. For detail information request literature or visit our website.

B.20 Battery (Individual) Monitoring (Wireless)

The wireless battery monitoring system for individual battery block monitors each battery voltage, battery impedance and (optional) battery temperature sensor. For detail information request literature or visit our website.
APPENDIX B- Figure 1 (Communications and Alarm Signaling Interfaces)
Index

A
- Alarm, 20
- Alarms, 20
- Alerts, 20
- Audience, 5

B
- Battery
 - connections, 36, 65
 - maintaining, 43
 - recharging, 38
 - terminals, 46
- Battery Monitoring, 86

C
- Cabling, 30
- Calling for service, 53
- Climatization, 29
- Components
 - key, 14
- Controller board, replacing, 50
- Customer service and support, 53

D
- Delivery space requirements, 21

F
- Floor load ratings, 28
- FRU replacement, 46
- Functional description, 17

I
- Inspecting the shipment, 28
- Installation
 - climatization, 29

K
- Key components, 14

L
- LCD display panel, 57

M
- Maintaining batteries, 43
- Maintenance, 42, 60
 - preventative, 43
- Maintenance agreements, 53
- Modes, 19
- Monitoring, Local On UPS - Aux CBs Trip Monitor, 82
- Monitoring, Local On UPS – Event log, 80
- Mounting, 30

N
- Normal mode, 19

O
- Offloading the system, 29
- Operating environment, 28
- Operation, 39
- Operator’s log, 43
- Options
 - details, 73
- Output loads, 20
- Output transformer
 - messages on the LCD display panel, 59

P
- Power connections, 45
- Power Flow Mimic, 79
- Preventative maintenance, 43

R
- Recharging batteries, 38
- Replacing
 - controller board, 50
- Requirements
 - delivery space, 21
- Response to input power failure, 19
Options

S
Safety, 6
Service, 5, 53
Shipment
 inspecting, 28
 unpacking, 29
Site considerations, 24
Specifications, 64
Standby mode, 19
Starting the unit
 after planned shutdown, 41
Start-up services, 53
Storing the system, 37
System
 cabling and mounting, 30
 climatization, 29
 functional description, 17
 key components, 14
 offloading, 29
 storing, 37
 theory of operation, 19

T
Testing the UPS, 43
Theory of operation, 19
Turning off the unit, 41

U
Unpacking, 29
UPS
 alarm, 20
 alert, 20
 UPS testing, 43

W
Warranties, 53
Warranty registration and warranty certificate request, 5